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Abstract. It is shown that the form of a non-dispersive wavemechanical packet representing 
a rotating particle of matter has a sharp and finite boundary in the equatorial plane and 
is entirely consistent with earlier models of phase-locked cavities. The latter have been 
shown to possess the properties of inertia without the need of Mach’s principle. Hence, 
it appears that the origin of inertia for all finitely bounded particles of matter lies in the 
feedback process that is intrinsic to phase-locked particles. The sharp bounding of the 
wavemechanical packet befits models of some elementary particles and may shed light on 
the remarkable process whereby the actions of quantum phenomena are concentrated 
into particular space-time events and are not diluted over large regions of the Universe. 

Mackinnon (1981a, b) has drawn attention to a solution of the wavemechanical 
equation 

O@=O (1) 

which has the form 

4 = [(sin k r ) / k r ]  exp(i wt  - k o x )  

and befits a non-dispersive wavepacket for a free particle of mass m travelling in the 
f x  direction at velocity U, where k o  = m v / h  and w = m 2 c / h .  He shows that this is 
consistent with a classical description of the particle and is equivalent to the electromag- 
netic form of a phase-locked cavity proposed by Jennison (1978). Gueret and Vigier 
(1982) have extended Mackinnon’s work and also noted the similarity to the author’s 
phase-locked cavities. Mackinnon’s solution, however, does not have a finite distant 
boundary, whereas such a boundary is required to return the wave in  a phase-locked 
cavity. 

At about the same time as Mackinnon’s publication, Jennison (1981) had gen- 
eralised his inertial analysis, phenomenologically, to include Jo  particles-all particles 
or regions of space containing trapped wave energy of any type (no longer restricted 
to the electromagnetic case), wherein the requisite echo effect for feedback could 
occur at velocity c. (The insignia ‘Jo’ particle referred to the rest energy in joules.) 
It is of interest to see what further information may be obtained by comparing or 
combining these two very different approaches. 

Consider the equatorial plane of rotation of a wavemechanical phase-locked cavity 
containing a very large number of wavelengths. Let this rotation be measured against 
a non-rotating inertial frame in which light paths are straight lines. For very small 
values of rotational angular velocity there will be distant parts of the system ( r  + a) 
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where the rotation will create a tangential velocity approaching the velocity of light. 
Applying R equally to all points in  the matter-wave system, the steady-state geometry 
becomes the inverse case of that discussed by Jennison (1963), the rotating radius 
now lying on a circular arc relative to the straight line radius in the inertial system. 
The whole system will become closed at a radius of r = R = c/R but the wavedistances 
in  the cavity will correspond to measurements on the circular arc which has a maximum 
length of S,,, = $.rrR and is related to r as an arc of a circle is to a chord 

s = ( c / ~ )  sin-'(Rr/c). (3 

From the phase-locking principle, there must be an integral number of half waves 
in the cavity (assuming no phase reversals at the ends). S,,, can therefore only have 
integral values of $nA where A is the wavelength of the matter wave = 2 m / w w a v e .  The 
only systems which can be rotated therefore have 

S m a x =  n r c / W w a v e  (4) 

where n is an integer. 
is now increased, the physical size of the matter-wave system must therefore 

reduce in successive steps to preserve phase-locking at the boundary and, from the 
limiting relationship RR = c, the value of SZ must correspondingly increase in successive 
steps which are integral submultiples of Wwave, thus 

Consider a matter-wave distribution of the form discussed by Mackinnon. In the 
rest frame wWave = m o c 2 / h  and we may substitute k = wwave/c. If this is rotated, we 
have the nonlinear form in the equatorial plane: 

If 

= w w a v e / 2 n .  

where we have replaced r in the argument of the sin function by the measure s ;  the 
r in the denominator is not affected since the divergence is dependent on l / r .  
Successive shells of this function are, therefore, shed as R is increased from zero. 
The nonlinear form of equation (5) corresponds to the real particle within 0 < r < c/R. 
(The double solution envisaged by de Broglie and Vigier may include c / R <  r < 00.) 

Substituting SZs/c = sin-*(Rr/c) from (3)  into (5)  we have 

(6) 
sin[(wWave/R) s in - ' (~ r / c ) ]  sin[2n sin-'(Rr/c)] 

exp iwwavet = exp iwwavet. 
2n n r / c  (I,= 

Wwaver/C 

This function, which is contained within the range r = c / w ,  is therefore applicable 
to the equatorial distribution of (I, in all simple rotating wavemechanical phase-locked 
cavities. The radius to the first minimum corresponds to a half wavelength from the 
centre at twice the Compton frequency, i.e. half the pair-production wavelength 
pivoting about the centre. The circumference through the first minimum corresponds 
to the Compton wavelength. This double role is significant for the interpretation of 
the conversion process in annihilation and pair production. Furthermore, the forma- 
tion of a real particle phase-locked to the Compton dimensions defines a combined 
proper measuring rod and proper clock of fundamental significance, as predicted by 
Jennison and Drinkwater (1977) and utilised by Jennison (1983). 

It should be noted that if a phase reversal can occur at the central node, then 
another series of modes is possible, based upon an odd number of quarter waves 
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pivoting about the centre. The fundamental solution (n = 1 )  in this case gives a uniform 
distribution of $ within the limiting radius R = c / w .  

The finite boundary condition has important consequences for inertia, for it 
provides an essential requirement for a phase-locked particle, that there shall be an 
outer boundary from which information may return to produce the requisite feedback 
in the system. Thus we can identify the closed systems of matter waves discussed in 
this paper with the Jo  types of phase-locked cavity and expect them to possess the 
various properties that have been discussed in that context. In particular, such particles 
of matter possess inertia corresponding to their rest mass and independent of the rest 
of the Universe (Jennison 1981 etc). This is currently of especial importance in view 
of the recent discovery of a possible rotation of the Universe and the resulting 
inapplicability of Mach’s pinciple (Birch 1982). 

Some comments on the properties of the rotating solution 

It will be noted from ( 5 )  that if we follow de Broglie’s concept in contradistinction 
to Schrodinger’s interpretation and we identify 141’ with the distribution of mass, then 
the mass distribution in any shell decrcases as l lr ’  along a single radial line and as 
l / r  for successive complete rings in the equatorial plane. The angular momentum 
for a ring is, however, proportional to the mass in that ring, the square of the radius 
of the ring and the angular velocity of rotation. For a system defined by the limiting 
radius r = R = c/n, m R ’ n  becomes mRc, but we have seen that m varies as 1 / R ,  
and the angular momentum for the interior shells therefore increases precisely to 
compensate for those shells which are discarded as fhe system is spun up. Within the 
limiting radius, the angular momentum of the total system is conserved as R increases 
in integral steps. 

The excess angular momentum is, conversely, shed in equal quantised steps as R 
increases and R,,, progresses inwards in discrete steps from infinity. A perfect detent 
mechanism therefore operates at the boundary to maintain a quantised state by 
shedding quanta of angular momentum from the system as its angular velocity is 
increased. If the system is born in a rotating state, as might correspond to the 
circumstances in the process of pair production, then the solution simply indicates 
that a rotating mass results, the angular momentum of which is conserved and quantised 
in the manner indicated. 

The properties of the boundary formed from the rotating transformation are 
remarkable and probably of some importance to the interpretation of measurements 
in particle physics. The boundary represents an onset of matter with a tangential 
velocity at the velocity of light. The formation of a mechanical system with a boundary 
rotating at this velocity would be quite impossible in macroscopic classical physics, 
but in this case it is simply constructed from the component matter waves so that the 
usual mechanical constraints are inapplicable; indeed, the mechanical system appears 
to correspond closely with the electromagnetic models discussed by Jennison (1978) .  
In that paper it was shown that the Compton energy and momentum equations could 
be derived classically for such a system whilst Ashworth and Jennison (1974)  showed 
that the angular scattering could be treated classically. Ashworth (1978) showed that 
the angular distribution of the scattering could be expressed in a form directly 
compatible with a specular reflection and with the Jennison (1978)  energy and 
momentum treatment. In these treatments it is usual to transform from the laboratory 
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frame to that of the particle and then back again. It is assumed that a fundamental 
observer at the particle could apply the usual laws of physics and that hel l ’s  law and 
the usual conservation laws apply. 

From the present analysis we now ascertain a number of very remarkable facts 
relevant to such a particle observer. If the reflection occurs at a surface which is 
rotating at or very close to the velocity of light then the scale size of the Universe 
will be vanishingly small. (This effect has been discussed in Ashworth and Jennison 
(1976).) If this observer receives radiation, then, as the Universe has been reduced 
to vanishing dimensions, the remainder of the wavefront which strikes him is contained 
in the encounter at the rotating observer’s point in space-time. We can speculate 
that it may therefore disappear, or strictly, never appear, as far as all other observers 
are concerned. Furthermore, the apparent specular reflection encountered in the 
Compton effect may be a simple outcome of the curious rotating geometry at this 
boundary. If this is the case, the communicating properties of fundamental particles 
in space-time are out of this world but still amenable to physical understanding. 

No attempt has been made in the paper to discuss wavemechanical models for the 
system which embrace the axial dimension and I have ignored the possibility of 
co-related electromagnetic phenomena, whereas many fundamental particles having 
rest mass also have electromagnetic properties. This paper has been concerned entirely 
with the wavemechanical system, but it invites the speculation that the boundary, 
rotating at the velocity of light, may behave as a ring displacement current, giving 
rise to an axial dipole magnetic field which may well constrain the polar component 
of the matter waves. I repeat that this is entirely speculation, but the present treatment 
has taken one so far down the road in providing a wavemechanical description of a 
discrete fundamental particle that one suspects that the final axial closure must come 
about in an equally simple manner. 
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